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On a pulsating jet from the end of a tube, with 
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The present paper discusses the hydrodynamics and propulsive properties when 
a jet of fluid is ejected from the opening of a tube. Formulas for the calculation 
of the thrust are provided and the basic equations for the horizontal rectilinear 
motion of a rigid torpedo-like body are studied in some detail. The results may be 
applied t o  investigate in an elementary way the locomotion of certain aquatic 
animals. 

1. Introduction 
The question of how nature has solved the problem of forward drive in living 

creatures in water is indeed an interesting and challenging one and it is the pur- 
pose of this analysis t o  pursue the thrust generation and locomotion of certain 
marine animals belonging to the class of cephalopods, particularly squids, octo- 
puses and cuttlefish. These animals, just as jelly fish and salps, swim by jet- 
propulsion. From the literature we will quote a remark by Prandtl (1952, 
pp. 237-238), and the following two references. I n  his book Haley (1958), makes 
the following statement: ‘As with most of man’s technical achievement, a point 
of origin for reactive propulsion may be found in nature. Here the squid (loligo, 
a mollusk) propels itself by syphoning and ejecting water,. . . .’ 

The other quotation is found in the fascinating book by Lane (1960, Ch. 4) : 

‘Ages before men discovered jet-propulsion, cephalopods were jetting through pri- 
meval seas. Some of the smaller species of squid are the best examples of these natural 
jets, their swift movements earning them such names as sea arrow and flying squid 
(Onychoteuthis, etc.). The propulsive force is sea water, shot in fast repeated pulses 
from a single nozzle, called the funnel or siphon, on the ventral or under side of the 
body. 

(Water enters round the free edge, or collar, of the mantle a t  the “neck”. It is 
drawn by expansion of the mantle walls into the mantle cavity which acts as a 
compression chamber. During the intake of water, the funnel is partially collapsed 
and closed. Then the inlet is sealed in three ways. Cartilaginous ridges on the inside 
of the mantle lock into corresponding depressions on the sides of the funnel; the head 
is retracted towards the body (visceral mass) ; and valve-like extensions of the sides 
of the funnel seal the rest of the opening. The heavily muscled walls of the mantle 
cavity contract violently, and the water is driven at  high speed through the muscular 
funnel which protrudes through the inlet. It is the pressure of this escaping water which 
distends the side valves of the funnel. A muscular valve inside the external opening 
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of the funnel controls the flow, and stops water entering from outside. The squid can 
point the funnel forwards or backwards, and as the jet of water shoots one way, the 
squid, by the law of action and reaction, is driven in the opposite direction. 

‘Although the principle of jet-propulsion is the same throughout the Cephalo- 
poda, there are differences in the mechanism. The above description is generally true 
of all fast and medium-fast species of squid, but some of the slower swimmers, such 
as the Cranchiidae, have parts ofthe mantle permanently fused to the head. Octopuses 
have only the ventral edge free and the locking mechanism at the neck is weaker than 
the cartilaginous mechanism of the decapods. Octopuses have no internal funnel 
valve and some, such as the Cirromorpha, have only a very narrow opening. In 
other octopuses (Chunioteuthis) the only opening is the funnel, so that water enters 
and leaves the mantle cavity by the same aperture. In the nautiluses (Nautilus), the 
most primitive cephalopods, the water is drawn in and expelled by pulsations of the 
funnel.’ 

A schematic sketch of a common squid (Loligo species) is given in figure 1. 
Most squids have a fusiform, or torpedo-shaped, body, terminated either by one 
end or two side fins. All squids have eight arms which are of unequal length in 
many species and two tentacles. The body, strengthened by the internal shell, 
is streamlined for swift movement through water. 

FIGURE 1. Schematic sketch of’ a common squid. (a )  Back or posterior end of the body 
which travels first through the water; ( b )  fin; (c) body or ‘mantle’, contracts and forces 
water from the funnel opening; (d )  inhalent opening (paired); ( e )  funnel; (f) jet-stream; 
( 9 )  head; (h) arms or ‘tentacles’; (i) front or anterior end of tho animal which travels 
bohind during the usual movement. 

The excess of momentum in the flow behind the squid leads to the concept of 
a kind of pulsating internal-flow pump jet. Now the excess pressure inside the 
tube is, of course, unknown, but if there is to  be an average thrust (or drag) the 
flow cannot be irrotational. The body must shed vorticity into the fluid. But from 
the existence of vortices, we can conclude that an impulsive pressure force was 
acting in the past and, in principle, we could determine experimentally its rate 
and the area it acted upon provided that other influences did not change con- 
siderably the shape of the vortices. We shall restrict our investigation to  a simple 
model and although a complete propulsion cycle consists of a suction and an 
ejection, we will consider in detail the latter only. 

2. The mechanism of propulsion 
Let us suppose that the body of a squid is composed in essence of a hollow 

section joined to an intake and joined to a well rounded orifice of circular cross- 
section (funnel). This system will be called a ‘ jet propeller ’ (figure 2 ) .  I n  order to 
relate this simplified model to the actual situation in the squid, the obvious 
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differences between both are to be stressed. Differences which immediately 
spring to mind are: 

(i) the body of the animal decreases in cross-sectional area as the jet is 
produced, so decreasing its drag; 

(ii) the jet runs close under the head when the tube is directed ‘backward’ 
and this must affect the flow considerably-the tentacles are used to direct the 
flow; 

(iii) the opening of the funnel changes in size as the thrust is made. 

FIGURE 2 .  Outflow from a well-rounded orifice. 

It is evident that the differences pointed out will affect the analysis consider- 
ably; however, the propulsion process taking place in the body of the animal is 
so complicated that a detailed theoretical investigation seems to be beyond the 
scope of a mathematical treatment. Thus, for a first approximation we restrict 
our study to the simplified approach described above. 

First of all we assume that we have acting certain imposed forces, which hold 
the ‘jet propeller ’ at rest with respect to a Cartesian co-ordinate system fixed in 
space. This infinitely extended space is completely filled with an ideal incompres- 
sible liquid, flowing with a constant velocity in the direction of the positive 
x-axis. As the consequence of an excessive pressure, produced in the hollow, 
fluid is ejected with a considerable velocity to the ‘rear’, i.e. in the direction of 
the translatory flow. During the periodic thrust intervals, we suppose that the 
exhaust has a uniform meanvelocity over the cross-section of the discharge nozzle. 
At the sharp trailing edge of the orifice, vortex rings originate which travel 
onwards. If the efflux continues long enough, the vortex wake will extend far 
downstream forming a long oriented contracting jet stream with an asympto- 
tically constant interior velocity. Such a formation preserves its grouping 
arrangement for a while, but has a tendency to instability and breaks up into 

26 Fluid Mech. 16 
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singular vortex lumps, without, however, any feedback to the aperture. In  the 
following we divide our investigations into two parts: in the first one we study 
the so-called quasi-one-dimensional flow ; in the second, a two-dimensional 
treatment of the flow fie1d.t 

A. The one-dimensionul theory of the unsteady periodically working 
jet propeller 

Let us assume that the jet propeller is immersed in a parallel flow U,, which is 
constant with respect to time (figure 3). A t  the cross-section u-a of the jet propeller 
a periodically varying pressure jump Ap(t) is generated so that the forces exerted 
on the fluid have the same direction as the streamlines, i.e. 

Ap(t )A 0, ( 1 )  

FIGURE 3. Schematic sketch of the instantaneous flow pattern of an unsteady 
periodically working jet propeller. 

provided that the forces in the direction of flow are assumed to be positive. The 
pressure distribution Ap(t) should be uniform over the area A of the surface ( A )  
of the cross-section u-a. We denote the period of the function Ap(t) by To; 

Ap(t + To) = Ap(t). ( 2 )  

At the cross-section I, which is located far upstream from the propeller, we have 
the undisturbed parallel flow U, and a constant pressure p a .  

At the location of the propeller, i.e. between the cross-sections 11 and 111, 
the fluid is accelerated as a result of the pressure jump Ap(t). The region of the 
fluid particles which are supposed to pass the surface ( A )  and the particles which 
are already in the wake of the propeller is indicated by the broken line. 

The cross-section IV is located far downstream from the propeller. In  that 

t See also Dickmann (1950) and Schiele (1961). 
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region a pressure equilization is assumed to have occurred, so that everywhere 
we have again the pressure p,. We must note, however, that this section is passed 
by the fluid particles of the 'slip stream' with an increased velocity Uo+ U ( t ) ,  
where U(t),  the 'supervelocity ' in the jet, is a periodic function of time. 

In  order to determine the thrust produced by the jet propeller, we apply 
the momentum theorem, as derived by Schiele (1961) for motions which are 

Po 

steady with respect to average values. Disregarding body forces (such as gravity) 
we obtain 

where v = {u, v, w} denotes the velocity vector with components in the X-, y-, 
z-directions, respectively, and n = {cos a, cos /3, cosy] the outward unit normal 
vector of a control surface S ,  whereby a, /3, y are the direction angles of the out- 
ward normal on S with the positive x-, y-, z-axes, respectively. 

The control surface S enclosing the jet propeller is shown in figure 4. Due to 
the fact that we have an axisymmetrical problem, it is sufficient to consider the 
forces in the x-direction only. Hence 

where (C) indicates the lateral area ofa circular cylinder whose axis coincides with 
the x-axis. 

26-2 
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The contributions of the individual parts of the bounding surface yield after some 
straightforward calculations 

pTrl loTo JJs u(u cos a + v cos + w cosy) d S d t  

TO 

0 
= p T c l /  [UoU(t)+ U2( t ) ]Amdt ,  ( 5 )  

where A ,  denotes the area of the surface (Am). The pressure integralof equation 
(4) yields the value zero with regard to the exterior bounding surfaces, since 
(A,)  and (A:) are located so far away from the propeller that the pressure equali- 
zation has takenplace. Thus, 

Now let us suppose a uniform distribution of the pressure jump 

over the surface 

Then we find from equation (6) 

Ap = p" - p' (7 )  

(A )  = (A') = (A"); (A') t (A),  (Af') J (A) .  ( 8 )  

Defining a time-average value of the thrust by 

F = T t l  IoT0 ApA d t, 

we have from equations (4), (5), (6) and (9) 

UzA,dt. 

(9) 

Denoting time-average values by a bar, 

we can rewrite equation (10) to yield 

T = pu, U ( t )  A,(t) +pUz(t )  A&). (11) 

We note that for the steady case, i.e. for constant U and A ,  with respect to 
time, equation (1 1) is transformed into 

(12) T = pUA,( U, + U ) ,  

which is in agreement with the known results of the axial momentum propeller 
theory of Rankine-Froude. 

Now we want to derive another expression for the thrust by using the Bernoulli 
equation (cf. Prandtl 1952, p. 39) 

--- ap+gcosB = - ;s g) +g. 
P as 



On a pulsating jet from the elzd of a tube 405 

In  this equation s denotes the co-ordinate in the direction of the streamline, g 
the constant gravitational acceleration, S the angle between ds and the direction 
of g, and q the velocity in the direction of flow. Neglecting gravity and integrating 
from a position s1 to a position s2, we obtain 

where the indices 1 and 2 refer to the values a t  positions s1 and s2. Assuming 
p and q as periodic functions of time the foregoing equation yields 

The last term on the left hand vanishes since, because of the supposed continuity 
of the function q(s, t ) ,  we can exchange the order of integration and know that q 
is periodic in t ,  so that q(0)  = q(To). Thus for time-average values we can write 

- 

132 + - i p z  = g + +pq;. 

po + +pu; = + + p G ,  (17a) 

( 1 7 b )  

(16) 

When this equation is applied to our case (figure 4)) it  follows that 

__ - ___I._ 

p" + ' U"2 - 
2P -Po++P(Uo+ w2* 

Taking into account that u' = u", we obtain from equations (1  7 a )  and (1  7 b) 
- - _  
Ap = p"-p' = - ; p [ ( u ,  + V(t))2 - u;]. 

T = T p  A = pU,,AU(t)++pAU2(t). 

(18) 

Therefore, the average thrust is given by 
_- 

(19) 

Again this formula yields for the steady case the well-known equation 

T = pAU(Uo+iU) .  (20) 

We wish to introduce into equation (19) the perturbation velocity U,(t) of the 
fluid particles on the x-axis pa,ssing the surface ( A )  of the jet propeller, the surface 
where the pressure jumpis generated. First, let us recallEuler's equations ofincom- 

Setting v = Uoi + v*, v* = {u*, v, w}, (22) 

F = -gradV, (23) 

assuming that the external forces F are derivable from a potential V ,  
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and neglecting in a first approximation the term v* x curl v *  (which certainly is 
not true for the flow in the wake) we can write 

with H = p + V + + p ~ * 2 .  (25 )  

v *  = grad$, (26) 

In  order to solve equation (24) let 

where (27) 

can be interpreted as the velocity potential of a sink flow of strength a& = U ( t )  dS 
at the location of the pressure jump. I n  the last equation R denotes the distance 
between an arbitrary point in space P outside ( A )  and a variable point P' in 
the surface (A) .  Substituting equation (26) into equation (24), applying the 
operation div and recalling the continuity equation 

0 . v  = V . V 4 , + V . V $  = V.V$ = 0, 

with #o = Uox as the velocity potential of the translatory flow, we find that H 
is a potential function, satisfying AH = 0. From equations (24) and (26) it follows 
further that 

The surface ( A )  of the jet propeller where the pressure jump occurs (cross- 
section a-a) is assumed to be a circular disk of radius Ro which is perpendicular 
to the x-axis and whose centre is the origin of our co-ordinate system. If we 
denote the cylindrical co-ordinates of an arbitrary point P in space by x ,  r ,  $ 
and those of a variable point P' on the disk by 0 ,  r ' ,  I++', we obtain 

and 

dS = r'dr'd$' 

R = [ T I 2  + r2 + x2 - 2r'r cos ($' - l/r)]*. 

The velocity u* along the x-axis ( r  = 0 )  follows from 

- _ ~ _ _  r'dr'd$' u* = - = __- 

to yield 

X 'it) [ (Ri + x2)t '1 * 

- __ - 

In  order to find the correct value for the wake, we have to add a parallel flow 
U(t) .  Hence 
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Substituting this value for U(t )  into equation (19), we have finally 
- _ _  

!F = 2pA[U, U*(t) + U",t)]. (29) 

FIGURE 5 .  Sketch of the test apparatus (proposed by E. G. Finke, Karlsruhe, 
Germany). 

As far as the coefficient of contraction C, of the jet is concerned, we remark that 
in the wake the velocity of the jet is approximately constant across the x-axis. 
Thus, from the continuity equation for the jet, 

AVO+ U*(t)l = Aa$) [Uo+ U(t)l ,  (30) 

there follows the relation 

with 8 = U(t)/U,. 
Equation (29) can be compared with experimental data obtained by K. Trunz 

a t  the Institut fur Stromungslehre und Stromungsmaschinen of the Technische 
Hochschule Karlsruhe, Germany (Dickmann 1950). A schematic sketch of the 
test apparatus is shown in figure 5. A piston, attached to a drive shaft which is 
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actuated by a crank, moves sinusoidally up and down in a vertical glass tube, 
which again is inserted into a large vessel. Then the average thrust value is 
measured by the reaction on the large container, placed on a highly sensitive 
balance. The results are plotted in figure 6. 

We assume the average velocity of the water at the opening of the cylin- 
drical glass tube to be equal to the velocity of the piston, which is given by 

(32) c = r,w(sin e + gh sin 2 ~ ) ,  

0 : ; ; ; l : ; ; ; l # , , , l , < ,  
1 ' 7 '  

where e = wt  and h = ro/Zo. The meaning of the symbols used is evident from 
figure 4. The relation between the angular velocity w of the crank and the speed 
of rotation n is given by w2 = ( n ~ / 3 0 ) ~ .  If we say that U, = c, i t  follows from 
equation (32) that U, = ro w sin wt + Qhr, w sin 2wt. 

I n  order to apply equation (29) to the present case we set U, = 0 and obtain 
(33) 

TF = 2 p A m ) .  (34) 

Now equation (33) yields the velocity distribution for the full propulsion cycle, i.e. 
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for the suction and ejection interval. But according to Dickmann (1955) thrust is 
generated during the ejection interval only; thus we find 

~ 

U$(t )  = $(r;w2 + $A2r&P) (35) 

and, hence, for the average thrust 

With the values p = 102kgsec'm-4, A = 2.63 x 10-4m2, ri = 9.78 x 10-4m2, 
w2 = 110 x (n/100)2sec-2, $A2 = 0.002, the last equation yields 

= 1.435 (n/100)2 [g]. (37) 

This function is plotted in figure 6 as a dot-dash line. A comparison with the 
experimental data shows that these results are smaller than those predicted by 
theory. However, the agreement is quite satisfactory when the approximations 
which were made in this analysis are taken into account. 

In  his paper Dickmann (1950) derives for the average thrust of the jet pro- 
- 

(38) 
peller at rest the formula T = p+pAc;, 

where ck denotes the average velocity of the piston. A factor p, to be determined 
by experiments, is introduced in order to fit the experimental results. In  figure 6 
curves with p = 1 and p = 2 are plotted as solid lines; we note that the curve with 
p = 2 shows a rather good agreement with the values obtained by measurement. 

To determine an approximate value for p we equate equations (38) and (36), 
neglecting the term $A2 in the latter. Hence 

p = rXw2/ci. (39) 

(40) 

Inserting c , ~  = 2r,w/n into the foregoing equation yields 

/ L  = in." = 2.47. 

B. The two-dimensional theory of the unsteady periodically 
working j e t  propeller 

In order to obtain a more realistic model of the mechanism of propulsion we want 
to dispense with the restriction of a one-dimensional flow pattern and to deal now 
with a two-dimensional fluid motion. This procedure allows us to treat the wake 
of the jet propeller as a vortex street with a symmetrical grouping of vortices. 
This approach can be considered to some extent as an extension of von K&rm&n's 
ideas. It should be pointed out of course that the assumed concentration of 
vortices at  singular points is an idealization; however, this prototype of a vortex 
configuration is not only a special case allowing a simple treatment, but approxi- 
mates also the state of a vortex distribution with continuous structure after some 
time. We know from experience that such a structure has a tendency to instability 
and breaks up into single vortex lumps. 

A sketch of the two-dimensional flow behind a jet propeller is shown in figure 7. 
At the sharp trailing edges of the walls W, and W, two vortices of equal strength 
and opposite direction of rotation separate and are carried away to the right. 
Together with the vortex pairs generated earlier they form a trail of point vortices 
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in a symmetrical arrangement, so that the eddies of the one row are situated 
exactly opposite to those of the other row. Photographic pictures showing the 
beginning of a symmetric vortex street behind a jet propeller are found in the 
paper by Dickmann (1950). Although such a configuration will change very soon 
into a formation where the two vortex rows are symmetrically staggered, we 
suppose a stable geometric pattern of two infinitely extended vortex rows sym- 
metrically spaced. According to Dickmann (1950) the mutual arrangement of 
vortices is irrelevant regarding the calculation of thrust from a periodic vortex 
system passing a control surface. 

. . _  - 
- 1  1 

FIGURE 7. Symmetric vortex trail behind a jet propeller. 

h 

_ _ _ - - -  

FIGURE 8. Disposition of the control surface. 

Figure 8 shows the disposition of the control surface S. The surface (A;)  is 
located so that it intersects the axis of the street perpendicularly between two 
consecutive vortex pairs. The position of ( A ; )  is far behind the generation of the 
propulsion; thus, in this region we have only the flow caused by the vortex trail. 
In  the same way we put the surface (Ah) in front of the jet propeller so that an 
undisturbed parallel flow may be assumed. Finally, we suppose the control planes 
(C') and (C") to be located so far away from the vortex configuration that again 
an undisturbed parallel flow may be assumed. In  the following we shall move the 
latter surfaces to infinity. 

Now let us consider a Cartesian co-ordinate system x, y whose positive z-axis 
is directed opposite to the direction of motion of the jet propeller. This reference 
frame is supposed to move with the vortex trail; therefore, in this system khe 
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position of the vortices remains unchanged. The time To the propeller needs to 
cover a distance I to the left is given by 

where U ,  denotes the constant velocity of the jet propeller and Us designates the 
uniform velocity with which the vortex system would move opposite to the 
direction of motion of the jet propeller in fluid at rest. 

During this time interval a pair of vortices is generated at  the trailing edge. 
The flow field in our reference frame is a periodic one but spatially shifted. The two 
flow patterns in the domain bounded by the control surface are identical at times 
t and t + To except for the newly generated vortex pair. A displacement about I 
at the instant t + To would shift the surfaces (A:) and (Ah) into positions indicated 
by (A:)  and (A:). The advantage of this co-ordinate system is evident. 

T, = I/(UO+ q), (41) 

B” = B{t} n B{tt- To} 
B 

FIGURE 9. Position of the control volume B a t  instants t and t + To. 

Let us apply now the momentum theorem for an unsteady spatially shifted 
periodic flow field (figure 9). According to Schiele (1961) we obtain for the three- 
dimensional flow field the equation 

where aB denotes the boundary of the domain B. Thus, specializing this result 
to our case, we find that the momentum theorem for the x-component yields 

where (Fm) and (Fo) refer to the shaded regions in figure 8 and aS indicates 
that the integral in question has to be taken along the boundary line of the control 
surface, that is, along the lines in which the plane surfaces (A),  ( A ; ) ,  (Ah), (C’), 
(C”), intersect the (x, y)-plane. In  order to calculate the terms of equation (43) 
we determine the velocity components u and w by using the complex potential x 
of the flow field which is given by 
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where z = x + i y 7  i2 = - 1, x1 designates the complex potential of the parallel 
flow in front and at the side of the control surface and x2 refers to the complex 
potential of the vortex street with point vortices of strength I?, where the basic 
vortices of the row are located at  & xo(zo = 41 + i ih) .  We should note that the 
direction of rotation of the vortices of this trail is opposite to the sense of the 
Kkmhn vortices. Differentiation of equation (44) yields the complex velocity 

From elementary but protracted calculations for the evaluation of the integrals 
in equation (43) it  follows finally that 

where p i s  defined by 

and Us = (I'/2l) coth nhll. (481 

We remark that in equation (47) the average thrust has a negative sign since we 
consider the forces exerted upon the liquid. 

Inserting the term for To from equation (41) into the thrust formula (46) we 
obtain 

T'=ph- U o + 2 U , - - - .  " 1 27r h ' I  (49) 

An analysis for the steady case yields 

with 

T =  lim T'=pA,U(U,+U) 

yo = lim r/l, 

1+0, r/2-+y, 

z-to 

where yo denotes the finite continuous distribution of the vortex strength of the 
two plane vortex sheets which form the contour of the jet stream and A ,  = h 
denotes the area of reference of the jet stream passing the surface (A:) .  

Now let us re-write equation (46) by introducing an appropriate Strouhal 
number. First of all we express in this equation the period To by the frequency 
v = l/To; hence 

(52) 

With the dimensionless quantities 
- 

= T/&phU& 

where the average thrust has been related to A,, and 

K = r/iuo, 

(53) 

(54) 

(55) we find 
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Defining now a Strouhal number u by 

u = vz/(r/z), (56) 

(57) 

we obtain finally 7 = K 2 ( 2 o + g ' ) .  (58) 

;rrh 1 
and putting = coth-----, 

1 ;rrh 

5' 0 5  

0 0 5  1.0 1.5 2.0 2.5 30 

nh/l 

FIGURE 10. Plot of function 5' vs nh/l. 

I I $ I I r I 
0 0.5 1 .o 1.5 2.0 2.5 3 0  

nh/l 

FIGURE 11.  Plot of function vs nh/Z. 

A plot of the function c, which depends on the geometry of the vortex trail only, 
is given in figure (10). It should be pointed out that equation (58) might be 
especially suitable to represent experimental results. 

Elimination of the Strouhal number from the last equation yields 

where 

7) = 2/41 + K r ) ,  

6" = Goth (nh/Z) - 1/2nh 
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depends again on the geometric configuration of the vortex street only. A plot 
of this function is shown in figure 11. The connexion between 6' and 6" is easily 
found t o  be <"-c = 1/27rh. Figures 12 and 13 show plots of 11 against K (para- 
meter 7rh/Z) and nh/Z (parameter K ) .  

10 

11 
5.0 

2.5 

0 

I I I I u 
1 2 3 

K 

FIGURE 12. Plot of function 7 'us K.  The numbers represent the appropriate values 
of nhll. 

11 

FIGURE 

3. Remarks on the equation of motion 
Let us consider the translatory motion of a torpedo-shaped rigid body C 

along a given horizontal axis. 
The body travels, prior to the onset of a motion cycle, with a constant initial 

average speed U, in water at  rest. It is assumed that thrust is produced only 
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during the thrust interval; afterwards the submerged body coasts until the next 
cycle begins. The maximum speed u1 will occur at  the end of the thrust interval 
and the minimum speed u2 will occur at the end of the coasting interval. Then 
Newton’s second law yields the equation of motion during acceleration and 
deceleration 

with u = u(t)  as the instantaneous body speed, Ti as the instantaneous thrust, 
I), as the instantaneous drag and M as the virtual mass, which is given by 

M = m’+m”, (62 )  

(63) 

with m’ as (actual) body mass and m” as ‘added’ mass. The latter term can be 
written in the form 

m“ = k,m, = k,pv, 

where m, and v denote the mass and volume of liquid displaced, k, a coefficient 
depending on the shape of the body, and p the density of the water. Although 
we are concerned with the problem of the motion of a body with variable mass, 
we assume for the sake of simplicity that M is approximately constant. 

In  order to derive a reasonable approximation for Ti we recall the relation 

T = pAU(U,+QU) (64 1 
holding for steady exhaust, where at present Udenotes the absolute velocity of 
the jet at  the discharge nozzle. Between U and U,, the jet velocityrelative to the 
orifice, there exists the relation 

Inserting this into equation (64) and remembering that U, = $U, we obtain 

u = u* - u,. 

T = PA( UZ, - Ug). 

T* = PA( 77: - u’). 

(65) 

(66) 

(67) 

Replacing U, by the instantaneous body speed u we have 

We now make the assumption that we can substitute p ,  the average thrust 
produced during a full propulsion cycle with period To, for T*. The time period 7 
of a full motion cycle consists of a thrust and a coast interval of duration 7’ and 
r ” ,  respectively. Thus 

(68) 7 = 7‘ f7”) 

with 7 = NTo, r‘ = N’T,, r“ = N“T 0 ; N = N’ + N”, (69) 

where N ,  N‘, and N“ designate the number of pulses occurring during a full 
motion cycle, the thrust interval and the coast interval, respectively. This yields 
for Ti approximately 

(70) 

or with K’ = N’pA, (71) 

finally q = K‘(U2, -u2). (72) 

Di = -&coVtpu2 (73) 

Ti = N‘T” = N‘pA( U$ - u’), 

The instantaneous drag Di can be conveniently expressed by 
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with co as an experimental coefficient depending on the shape of the body and V, 
as the submerged body volume, which in our case is equal to the volume of 

(74) 

we obtain Di = K"u~ .  (75) 

the body itself. Putting K" = 1~ J7% 2 0 O P ,  

Hence we have the following differential equation of motion for the acceleration 
period (thrust interval) 

(76) 
du 
at 

M - = K'U; - (K' + K") u2. 

Setting 

it follows from equations (76) and (77) that 

du 
dt 
- = C1-C2U2. 

Integration of this simple Riccati equation yields 

or 

t+r --log- 1 K+C2u 
'- 2K K-C,tc' 

u = - tanh K(t + ro), 
K 

c2 

with K = (C1C2)4 and the integration constant 

1 K+C,U, 
7 - -log-- 

O - 2K K-C2Uo' 

(77) 

resulting from the initial condition u(0) = U,. The velocity u1 at the end of the 
thrust interval follows from u1 = ~(7'). The distance s1 covered during this time 
is given by 

cosh Kro * 

The coast period is described by the equation 

or 
du K" 
dt M u2* 
- = -- 

Integration yields u = { g t f q - l ,  

where the integration constant 
1 K' = - - - T I  

u1 M 

(84) 

is determined by the initial condition u(r') = ul. During the coast interval the 
velocity of the body decreases and attains, at  the end of the motion cycIe (t = T), 
the value 

u1 
- 1 + ( K " / M )  r"u1' 
--___ 
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For the distance s2 covered during the duration of the coast interval, we find 

The results derived so far are based on the integration theory of the differential 
equation of motion under the hypothesis that the instantaneous thrust can be 
approximated with sufficient accuracy by equation (70). Another approach 
relating the average thrust, produced during the thrust interval, somewhat 
more to observation relies on the momentum principle. Neglecting drag we 
obtain 

I O T T ( t ) d t  = M(u,- U0) .  (89) 

Therefore with 

JOT‘T(t)at = ~ ( t ~ ) +  z ~ 7 ’  (0 < to < 711, (90) 

(91) 

we can write 
U1-  uo Ti z M = K O  = const. 

r 

Hence, for the acceleration period 

d u  
at 

M - = K O  - K”u2. 

Putting 

we obtain a differential equation having the same structure as the foregoing 
equation (78) except the meaning of the constants. For the deceleration period 
(coast interval) equation (83) holds again. 

It would be desirable to apply the theoretical results of this analysis to the 
actual motion of a squid or octopus and to compare calculated data with those 
obtained by observation. However, very little authentic information is available 
regarding the swimming speed of squids. According to the American marine 
zoologist, Conrad Limbaugh, the common Pacific squid (Loligo opalescens) 
‘travels approximately 5-8 m.p.h. judging from those being chased by sea lions. 
Common heavy-bodied squids in the Bahamas travel approximately 4-6 m.p.h.’ 
(Lane 1960, p. 60). A report by Commander Arne Groenningsaeter of the Royal 
Norwegian Navy (Lane 1960, p. 223) indicates swimming speeds of large squids in 
the region of some 20m.p.h., which seems reasonable for a large ommastrephid. 

Concerning octopuses we want to remark that they are generally not such fast 
swimmers as squids and cuttlefish. Joseph Sinel, whose studies are based chiefly 
on the common octopus (Octopus wulguris) in the Channel Islands, gives the speed 
of one with a two-foot span as about 8m.p.h. Each expelled jet drives the 
octopus 6-8 ft. The distance is much greater in squids of comparable size, owing 
to their more powerful jets and streamlined shape (Lane 1960, p. 68). 

These few statements point out clearly that a close agreement between data 
calculated from observations and theoretical results predicted by the present 
analysis is not to be expected. Much work remains to be done with regard to 
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observation as well as improvements of the approach of this study in order to 
relate in a more realistic way the functioning of a model to the actual situation in 
a squid. 
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